
Bedrock Linux

Daniel “paradigm” Thau
The Ohio State University

Open Source Club

2012-05-24



Bedrock Linux
Table of Contents

The Perfect Distro
Bedrock-Only Features
Testimonials
How It Works
Design Choices

Package choices
Bedrock Scripts
Current Issues
Goals For Future Releases
First Release



Legal Disclaimer

In the United States, the name “Linux” is a trademark registered
to Linus Torvalds, and currently “Bedrock Linux” does not have
the rights to use “Linux” in its name. Plans to acquire a license to
use “Linux” are in place. While the discussed project is
Linux-based, it is not officially endorsed by or otherwise affiliated
with Linus Torvalds.



Slideshow Quality Disclaimer

It is intended that these slides be self-sufficient without the
presenter. This means they are very wordy. I apologize.

tl;dr: too many words, sorry



The Perfect Distro

Decided to give this Linux thing a try.
Which distro should I use?



The Perfect Distro
Debian, RHEL clones

+ Stable (both reliable and unchanging)
− Out of date

Arch, Sid, Rawhide
+ Access to cutting-edge packages
− Unstable (less reliable, changes often)

Gentoo, LinuxFromScratch
+ Customizable
− Work to setup/maintain

LinuxFromScratch, Tinycore
+ Minimal
− Work to setup/maintain

Ubuntu, Mint
+ User-friendly

Knoppix, Slax
+ Portable



The Perfect Distro

So which should I chose?



The Perfect Distro

What features are the most important?
Which features can I give up?



The Perfect Distro

I choose everything.



The Perfect Distro

Bedrock aims to make most of the (often seemingly
mutually-exclusive) benefits of various other Linux distributions
available simultaneously and transparently, with as little overhead
as possible.
X Debian or RHEL-clone’s rock solid stability?
X Arch’s cutting-edge packages? AUR?
X Gentoo’s compilation automation options?
X Ubuntu’s Unity? Mint’s Cinnamon?
X Your-favorite-distro’s your-favorite-feature? 1

All at the same time, transparently, with effectively zero overhead.

1Well, some features, but definitely not all. At the moment Bedrock can
not be honestly considered “user-friendly.”



Bedrock-Only Features

In addition to doing (almost) anything any other distro can do, there
are a number of things Bedrock can do which no other distro can.



Bedrock-Only Features

You can do a distro-upgrade (Debian 5→6, Ubuntu 12.04→12.10,
etc) live, with almost no downtime - no need to stop your apache
server, reboot, configure things while server is down, etc.



Bedrock-Only Features

If a distro-upgrade breaks anything, no problem—old distro’s setup
(can be) still there, ready to go.



Bedrock-Only Features

Minimal stress from any given package failing to work—just use
one from another distro.

Packages feel disposable, like toothpicks. No need to fret over one
breaking, just use another.



Testimonials

All of Bedrock’s user base2 is raving about how amazing it is!

2Well, erm, there is only one user at the moment—Bedrock’s developer,
who is admittedly quite biased—but these are 100% true stories.



Testimonials

“ When Quake Live’s Linux release came out, there was a bug with
how it interacted with Debian’s X11. Apparently they focused on
getting it to work with Ubuntu—so I just used Ubuntu’s X11 (while
keeping everything else Debian) and everything worked great! ”

—Daniel “paradigm” Thau



Testimonials

“ When Debian 6 came out, my touchpad stopped working
properly. Some other guy with similar hardware had to debug it
and find some obscure X11 settings to fix it. I just had Bedrock
continue using Debian 5’s X11 until I the solution was found while
the rest of the system was Debian 6. Bedrock just gives me so
much choice! ”

—Daniel “paradigm” Thau



Testimonials

“ I was recently discussing the uses of LD_PRELOAD with an
Arch user, who said he uses it to fix a problem with Quake Live
not supporting his cutting-edge libraries. I just use Bedrock have
Quake Live use another distro’s libraries. ”

—Daniel “paradigm” Thau



Testimonials

“ I needed to get compiz working to give a presentation at some
club I attend. Thing is, Arch’s compiz is apparently broken for
reasons I don’t care to debug, and Debian’s X11 is to old to
support compositing on my newish hardware. So I just ran
Debian’s compiz in Arch’s X11—had it all up and running within a
few minutes of setting out to do that. Good luck handling that
situation so smoothly with other than Bedrock. ”

—Daniel “paradigm” Thau



Testimonials

“ I really like a math program called ‘Sage.’ The only distro I know
which had it in its repos is Arch, so I just pacman’d it from Arch.
However, apparently the Sage devs don’t care to ensure it works on
Arch and broke something critical. Well, they test it on Ubuntu, so
I just have it use the Ubuntu libraries now. Down time when Arch
removed it from its repos3? Just the time to re-download the
Ubuntu-packaged version. ”

—Daniel “paradigm” Thau

3Sage is available in AUR on Arch, but the build time is substantial.



Testimonials

“ I used awesome from the Arch4 repos as my window manager a
number of years ago. Well, an Arch update completely changed
awesome’s config syntax—it suddenly used some crazy
programming language I didn’t know at the time. All of my configs
were broken, and I didn’t have the time to remake them. So I just
used awesome from another distro and kept on chugging with my
old configs for a while longer. Thanks Bedrock! ”

—Daniel “paradigm” Thau

4The config changed happend in 2008, yet Arch seems to have added
awesome into its repository in 2009; perhaps my memory was faulty and it was
another distro. The principle explained here should stand irrelevant of distro,
but I want to avoid providing misinformation.



How It Works

Bedrock’s magic is based around filesystem and PATH
manipulation.



How It Works — Chroot

A chroot changes the apparent filesystem layout from the point of
view of programs running within it. Specifically, it makes a
directory appear to be the root of the filesystem.
For example:

I Firefox is located in /var/chroot/arch/usr/bin/firefox
I If one runs: # chroot /var/chroot/arch

/usr/bin/firefox
I Firefox thinks it is located at /usr/bin/firefox
I When firefox tries to load /usr/lib/libgtk2.0-0
I It will actually read load

/var/chroot/arch/usr/lib/libgtk2.0-0



How It Works — Chroot

Some people consider this a light-weight vitalization. This is false,
for two main reasons:

I It is possible to deliberately break out of a chroot, especially
as root.
+ If you want to have programs in chroots interact with

programs out of chroots, you can do so quite easily. This is
much harder to do effectively with actual virtualization.

− However, this makes it a poor sandboxing tool. Actual
virtualization is better for this.

I Programs in chroots still have the same access to your
hardware as programs outside of them.
+ Minimal overhead—can, for example, do 3D just as well as

non-chroot.
− Again, possible security issues if you’re trying to sandbox.



How It Works — Chroot

Bedrock has the full filesystem of other distros available on-disk,
each in their own directory. If one would like to run a program
from that distro, via chroot, the program can be tricked into
thinking it is running in its native distro. It would read the proper
libraries and support programs and, for the most part, just work.



How It Works — Bind Mounts

Linux can take mountable devices—such as usb sticks—and make
their filesystems accessible at any folder on the (virtual) filesystem.
Mounting usb sticks to places such as /media/usbstick or
/mnt/usbstick are typical, but not required—just about any
directory will work. Linux can also mount virtual filesystems, such
as /proc and /sys. These don’t actually exist on the
harddrive—they’re simply a nice abstraction.



How It Works — Bind Mounts

Moreover, Linux can bind mount just about any directory (or file,
actually) to any other directory (or file). Think of it as a shortcut.
This can “go through” chroots to make files outside of a chroot
accessible inside (unlike symlinks).



How It Works — Bind Mounts

With bind mounts you can, for example, ensure you only have to
maintain a single /home on Bedrock. That /home can be bind
mounted into each of the distros chrooted filesystems so that they
all share it. If you arbitrarily decide to stop using one distro’s
firefox and start using another’s, you can keep using your same
˜/.mozilla—things will “just work.”



How It Works — Bind Mounts

Through proper usage of chroots and bind mounts, Bedrock can
tweak the filesystem from the point of view of any program to
ensure they have access to the files they need to run properly while
ensuring the system feels integrated and unified.



How It Works — PATH

Programs read your PATH environmental variable to see where to
look for executables, and your LD_LIBRARY_PATH for libraries.
For example, with
PATH="/usr/local/bin:/usr/bin:/bin"
when you attempt to run “firefox”, the system will check for firefox
in the following locations (in the following order):

I /usr/local/bin/firefox
I /usr/bin/firefox
I /bin/firefox



How It Works — PATH

Using a specialized PATH variable, Bedrock can have a program
attempt to run a (chrooted) program in another distro rather than
only looking for its own versions of things. By changing the order
of the elements in the PATH variable, search order (ie, priorities)
can be given.



How It Works — PATH

Currently Bedrock prioritizes the “native” executables before
searching through the other distros, and has a hard priority for the
other distros. Future versions of Bedrock are planned to support a
more capable system for fine tuning of which version of which
program is executed where.



Design Choices

Due to Bedrock’s unusual goals, several unusual design choices
were made. These choices were the reason Bedrock’s system
requires its own distribution to be fully utilized rather than simply
being grafted onto another distribution.



Design Choices — Simplicity

Understanding Bedrock’s filesystem layout (with the chroots, bind
mounts, and dynamic PATH) can be quite confusing. Additionally,
due to the limited development team, no user-friend installer will
be available for quite some time; users will be required to compile
Bedrock Linux “from scratch.” Moreover, users will have to
maintain things on a very low level; they will be expected to, for
example, hand-edit the init files (reasoning explained later).

In order to ensure Bedrock is viable for as many users as possible,
everything which doesn’t have to be confusing or complicated
should be made as simple as possible.



Design Choices — Simplicity

Bedrock thus choses some unusual packages. GRUB, the de-facto
bootloader for the vast majority of major Linux distributions, is a
tad complicated. Syslinux is significantly easier to setup and
maintain by hand, and thus is the “official” choice for Bedrock.
However, GRUB should work fine, if the user wants to figure out
how to install and manage it himself.



Design Choices — Minimalism and Deferring Features

Most major Linux distributions have much larger and more
experienced teams. Where directly comparable, they are most
likely better than the Bedrock developer and Linux-distro-making.
Thus, where possible, it is preferable to use a client distro rather
than Bedrock itself. If something can be deferred to a client distro,
it will be; Bedrock only does what it has to do to enable the
integration of other distros.



Design Choices — Statically-Linked Compilation

Typically, most executables refer to other libraries for their
components. If this is done at runtime, this is known as dynamic
linking. By contrast, one can (sometimes) statically link the
libraries into the executable when compiling.



Design Choices — Statically-Linked Compilation

When using dynamically linked executables, the libraries for the
executable must be available at run time. This is why you can’t
just take an executable from one distro and run it on another — if
the libraries don’t match what it was compiled against, it won’t
work. Statically linked executables can, however, run just about
anywhere irrelevant of libraries (of course, one still needs the same
kernel, CPU instruction set, etc)



Design Choices — Statically-Linked Compilation

In order to ensure the following items, Bedrock’s core components
are all statically linked:

I Run a core Bedrock executable directly in any of the client
distros without worrying about chroot.

I Compile a Bedrock core component in any distro and simply
dump it in place to update the component.

Note that client distros may freely use dynamically linked
executables; this is only important for core Bedrock components.



Design Choices — Statically-Linked Compilation

It should be noted that statically linked compiling is frowned upon
by many very people who are knowledgeable on the subject.

“Static linking is emphatically discouraged for all Red Hat
Enterprise Linux releases. Static linking causes far more problems
than it solves, and should be avoided at all costs.”

https://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/lib.

compatibility.static.html

“Conclusion: Never use static linking!”

http://www.akkadia.org/drepper/no_static_linking.html

The Bedrock developer believes that Bedrock’s unique situation
creates a justifiable exemption, but do your own research.
Another distro-in-progress, stali from suckless, also makes heavy
use of static compilation: http://dl.suckless.org/stali/clt2010/stali.html

https://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/lib.compatibility.static.html
https://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/lib.compatibility.static.html
http://www.akkadia.org/drepper/no_static_linking.html
http://dl.suckless.org/stali/clt2010/stali.html


Design Choices — Manual Client Init Scripts

Most Linux distributions automatically manage the programs
which are run at startup and shutdown. It is quite possible (and, in
fact, likely) that multiple client distros will have startup and
shutdown scripts which conflict with those from other distros.
Moreover, there are a variety of Linux init systems, each of which
have their own system for ensuring the programs are launched in
the proper order to meet their prerequisites.



Design Choices — Manual Client Init Scripts

The Bedrock developer has been unable to think of any sane way
of determining which init script to run when the client distros
conflict (which CUPS daemon should run, if multiple are
available?). Additionally, an automated way to determine the
launch order from all of the possible systems it will run into seems
far to challenging of a project.

Thus, Bedrock requires manually setting which programs from
which distro’s init is launched when.



Design Choices — Self-Sufficient Booting

The Bedrock developer feels strongly that
I Bedrock should be able to boot and do (very) basic tasks

without any client distros.
I Bedrock should be able to boot even if the client distros

unexpectedly break.
This means that if one would like a client distro to do something
required when booting (for example, manage /dev)

1. Bedrock will everything else essential for booting
2. Bedrock will later, after the essentials are done and the

system is functional, stop and let a client distro take over.



Package choices — Kernel: Linux

No other OS kernel has such a variety of userland options which
could benefit from Bedrock’s approach.



Package choices — Bootloader: Syslinux

This is the simplest bootloader the Bedrock Developer knows of.
Setting it up is just a handful of commands



Package choices — Userland: Busybox

Busybox is an all-in-one solution for a minimal(/embedded) Linux
userland. It is significantly smaller and easier to set up than most
of its alternatives. It is trivial to compile statically.



Package choices — Chroot: Capchroot

The standard chroot command requires root. If setuid’d it is quite
possible to use chroot to escalate privileges. Thus, Bedrock
requires a specialized chroot package intended to be used by
non-root users. The typical choice for such things, schroot, was
found to be too, large, complicated, and difficult to compile
statically. Instead, Bedrock uses a little-known program called
capchroot. This still requires some patches to be compiled
statically linked, but is otherwise ideal.



Package choices — Shell Scripts

Additionally, Bedrock uses some of its own shell scripts (using
busybox’s /bin/sh) for things such as booting and integrating the
system. Since busybox was already chosen, using its shell scripting
option was an obvious choice.



Bedrock Scripts — brc

brc is a front-end for capchroot and is the main way users will
manually run commands from other client distros. For example
brc fedora firefox
Will run Fedora’s firefox, even if the firefox command would
normally default to another distro’s firefox. It will detect when
preparation for setting up a distro client is needed, and
automatically default to running the shell if no arguments are
given.



Bedrock Scripts — brp

Early versions of Bedrock would detect if you tried to run a
command which isn’t available and, on the fly, attempt to find the
command in a client distro. This proved to slow. Instead,
Bedrock’s brp command will hash the available commands in the
client distros. This can take a few seconds.



Bedrock Scripts — brl

The brl command will run its argument in all available client
distros. If, for example, you want to test to ensure that all of your
distros have internet access:
brl ping -c 1 8.8.4.4



Bedrock Scripts — bru

Updating all of the client distros is a very common task, and so
bru was created to make it a simple one. Running bru will update
all client distros sequentially.

Early versions of Bedrock attempted to update all of the client
distros simultaneously, but there were potential issues of multiple
programs changing the same (shared) file simultaneously.



Bedrock Scripts — brsh

Due to its purposeful minimalism, the core Bedrock install only
includes busybox’s very limited shells; users will most likely want to
use a client distro’s shells by default. However, this raises two
problems:

1. What if the user needs to log into bedrock’s busybox’s
/bin/sh? For example, maybe the chroot system broke, or
he/she is debugging a busybox update.

2. What if the chroot system is fine but the client distro breaks?
What if the user forgets that he/she uses the distro client’s
shell and removes the distro?



Bedrock Scripts — brsh

Option 1:
Bedrock has its own meta-shell, brsh, which will log in to a
configured distro client’s shell, if available. If it is not available, it
will automatically drop to Bedrock’s /bin/sh.



Bedrock Scripts — brsh

Option 2:
The traditional Unix /etc/passwd allows creating multiple entries
with different login names and different shells but same password,
home, etc, for the same user.
root:x:0:0:root:/root:/opt/bedrock/bin/brsh
brroot:x:0:0:root:/root:/bin/sh



Current Issues — /etc/ File Syncing

In addition to ensuring directories like /home are shared between
client distros, Bedrock must also ensure some files in /etc are
shared. Specifically, user management files such as passwd and
shadow need to be the same in the client distros. However, other
files in /etc—such as issue—have to remain distinct, so not all
of /etc can be shared; just the individual few files.

Bind mounting works wonderfully on directories where the contents
of the directories are changed but the directory itself is not. Bind
mounting also works great on files which are read-only, or edited,
but not overwritten. However, issues arise when individual files are
overwritten, and this happens a lot in /etc.



Current Issues — /etc/ File Syncing

In order to ensure important files such as passwd are never in a
partially written state, passwd management programs copy it, alter
the copy, then rename the new file over the old one. This way if
the machine dies, one is almost always left with either the new copy
or the old, and almost never a corrupt partially-written version.

Attempting to move a file onto a mount point, however, is
forbidden, and results in errors.



Current Issues — /etc/ File Syncing

So bind mounts are out. Alternatives? Hard links are out because
overwriting those removes the hard link—it would no longer be
synced.

Symlinks should properly handle overwriting, but they don’t break
through chroots.

In theory, symlinking to a directory which is bind mounted should
work. However, passwd management programs like GNU’s adduser
refuse to function on a symlink.



Current Issues — /etc/ File Syncing

Workaround:
I Manually manage syncing of the files

Plans to resolve this:
I Contact the GNU people to see why it refuses to act on

symlinks.
I Find where the really, really good people are for this to

ask—maybe LKML?



Current Issues — Argument Passing

There is currently an issue where arguments to some programs do
not appear to be properly passed across client distros when they
contain spaces. For example, if mplayer is in a different client
distro from the one the shell is running in
$ mplayer Big\ Buck\ Bunney.ogv
makes mplayer thing it is getting three movies to present, not one
with spaces. Should be fixable, just haven’t gotten to it yet.



Current Issues — Delays with new client distro history

When a program in one client distro tries to run a program in
another client distro, some preparation must be done. This only
needs to be done once per distro history. For example:
Bedrock → Debian → Arch → Debian
Would require setup for each step of that history, but when none
when launching another program with the same history.
This preparation takes some time (about half a second). Ideally,
more of the setup should be moved to boot time rather than
delayed until called.



Current Issues — Locale Support

Locale support is currently limited to timezones. Everything else is
US-English-QWERTY.

If you know how to setup French or DVORAK, you are more than
welcome to; however, Bedrock does not officially support either at
the moment.



Current Issues — On-Battery Filesystem Checks

Most Linux distributions check to ensure one is not running on
batter when running fsck. Bedrock does not currently have this
check.



Goals For Future Releases — Package Manager Manager

A package manager manager.
Currently, managing packages in client distros chrooting to that
distro and using the distros own package manager. This means a
non-unified user interface is required for each distro. Sometimes
apt-get, sometimes pacman, sometimes yum. It would be nice if a
shell script was provided which wrapped around these programs,
providing a unified interface.



Goals For Future Releases — Package Manager Manager

For example:
# pmm install arch firefox
Would call pacman in Arch Linux and install firefox.
# pmm install any sage-mathematics
Would install sage-mathematics in the first client distro it finds
which has that package in its repos.
# pmm install newest libreoffice
Would look through all of the client distros for which has the
newest copy of libreoffice in its repos and install that one.



Goals For Future Releases — File System Jump Warnings

Remember, while some aspects of the filesystem are shared
between client distros, others have to be kept separate. This can
lead to some confusion. For example:
Debian has vim installed. Arch does not. If the following command
is run in Arch
# vim /etc/issue
It will edit Debian’s /etc/issue file rather than Arch’s.
An (optional) system is planned to warn the user in the event of
such situations.



Goals For Future Releases — Automatic Acquisition Of
Client Distros

Currently, one must manually find a way to get a client distro
on-disk. Plans are underway for a shell script which will automate
this process. It will be, in essence, a wrapper around
debootstrap, febootstrap, and/or pacman.



Goals For Future Releases — Proper Locale Support

Support for non US-English-QWERTY locales is planned.



Goals For Future Releases — Init System Rework

An minor overhaul of the init system is planned, with the following
changes in mind:

I Parsing a config file for settings (such as whether time is
stored in UTC or local, timezone, locale, etc) rather than
hardcoding this into the init.

I Combining all of the various init scripts into a single init script
I Moving client distro init components into a separate file



Goals For Future Releases — Shared Subtrees

Typically, mounts do not propagate in bind mounts. For example,
if you mount something into /home, then bind mount /home
somewhere else (such as a client distro), the mount you made
earlier in /home will not be in the new bind mount.

Shared subtrees, however, should propagate mounts in this manner.
However, they do not seem to work recursively – if you make a
shared bind mount inside of itself, it doesn’t propagate recursively.

It may be possible to use shared subtrees instead of the bind
mounts to improve efficiency, and it may be used in future versions
of Bedrock.



First Release

Releasing a Linux distro is not as simple as tarballing the source
with a makefile, throwing it up onto a file server, and handing
people the URL.

One must either create an installer (which will not happen for
Bedrock for quite some time), or create documentation detailing
how one would go about installing the distro (think Linux From
Scratch).



First Release

In order to do this properly, it should be done while installing
Bedrock step-by-step rather than from memory. This requires
taking down a computer for an extended period of time. The
Bedrock developer has not had both the time necessary to install
Bedrock from scratch as well as a spare computer to have down for
an extended period of time.

Additionally, instructions on managing the unusual components of
the system must also be made, such as instructions on how to set
up client distros or make a CUPS server start at boot.



First Release

Bedrock development has, surprisingly, remained on schedule for
the past two years. The first official release (“Appa”) has been
scheduled for the end of Summer 2012. Testing and feedback will
be highly welcome.


